
Jon Whittle
QSS Group Inc.

NASA Ames Research Center

Synthesis of Software Designs
from Requirements

Photo: NASA Ames Research Center

��������	
����
���	���	���	������

UNIFIED
MODELING
LANGUAGE

• A software model is a blueprint for software: essential for project team
communication and to ensure architectural soundness

• NASA missions generally follow rigorous software processes that increasingly rely
on software modeling, e.g., Mission Data System (JPL), Space Shuttle (United Space
Alliance)

• Currently, however, software models serve merely as documentation that becomes
obsolete when crunch time hits

Our research goal: develop algorithms and tools that allow
software models to be kept in sync with each other

��������	
����
��

�������

����	��

	��
��
�

•Unifies OO methods
•Modeling language for OO
•Notations + meta-model
•Commercial tools: Rhapsody, Rose etc.
•Used in NASA: MDS, Space Shuttle, ATC

Software lifecycle

Problems:
• loose connection between models
• difficult to maintain consistency
• redundancy in models

Advantages:
• common language
• easy to document code
• each stakeholder chooses his own notation
• multiple viewpoints

Research Goal:
algorithms, methodologies and tool support for
connecting models in a consistent way

��������	
����
��	�
��	�
�

• Unifies OO methods

• Modeling language for OO

• Notations + meta-model

• Commercial tools: Rhapsody, Rose etc.

• Used in NASA: MDS, Space Shuttle, ATC

Requirements

Design

Code

Code generators

Use cases
(scenarios)

Statecharts

C++/Java/…

???

���
��	�������
�	���� 	������
��

Statechart synthesis
from scenarios (UML
sequence diagrams)

����������	
����
����
�����
�
�����

������
����
�
�����

Technical challenge:
• detect inconsistencies
• merge duplicated behaviors
• generate readable designs
• facilitate iterative refinements

� ���	
�	�	������	�������
�	

� ���
���

• Related work:
– Harel’s LSCs
– Systä et al (MAS)
– Khriss et al

• Detect inconsistencies & ambiguities
• Merge similar or duplicated behaviors
• Generate readable statecharts
• Facilitate iterative refinements

����������	�� ���!��

• Developed an algorithm for automatically translating UML sequence diagrams
into UML statecharts that embodies the idea of a “good” synthesis engine

• Previous state of the art based around a “naïve” merging:
– Generate a statechart for each class/component

– Regard incoming messages as trigger events, outgoing messages as actions

– Merge each class’s statecharts from all the sequence diagrams “naively”

�

a
b

c

�

if a: execute b

if c: cont

“naïve”
merge

• ScGen supercedes this using advanced technology to merge states if appropriate,
introduce structure into the states automatically and detecting conflicts in the scenarios

�

a
b

c

• A “good” synthesis engine requires additional semantic information

� Use Explicit Labels or Class Diagram Constraints (OCL)
• Explicit Labels:

• OCL Constraints:
Context Agent::graspBox(b : Box)
pre: self.carries->isEmpty
post: self.carries->includes(b)

• SD1: graspBox, move
SD2: graspBox, graspBox, move

• Characterize states using State Vector :
– SV = <orient’, gripper’, hands’, carries’, coordWith’, leader’ >

• Use state vector to merge states, detect conflicts and introduce hierarchy:
via a unify/propagate/conflict detection algorithm

������
��	"	��� ���
�	#������

S1

#���	������

#�����	������ $���� ��
��	������ 	%#�$�&

• Set of tools to increase throughput at airports/ in

US airspace

• Already implemented, but constantly evolving

• Weather control logic -distribute weather updates
to all clients

Q: To what extent is it possible to automate end to end synthesis?

textual
reqmts

formal
scenarios

statecharts

class
diagram

Integrated
C++ code

• “every client that uses weather data should be notified of a
weather update and all clients should begin using the
updated weather data at the same time”

• 10 pages of textual requirements, e.g.:
�������
���
�
�����!
"��#���
	��
#��������

�	����
����
	��
$�
	���

�%���
�	
	��
��
&'��(&�)�*+,

�!

�%
������	�!
��
	���-
�
��
�����	

�
�
���"��!�!
��
	�
	��
��)�.(�/.+/$.$�0�
����
��1

�
�
�	
�����!
��	
	��
$�
	���
�%���
�	
	��
	�
�'+/2

� ��
�	
�����!
������
	��
$�
	���
�%���
"��!���
�	
	�

� ��
�	
�����!
��
���
	��
3�
��
	���
���	���
"
���
4��	5
��		��

� !�
�	
�����!
���	�
	��
���
��
	���
#����
�	
��#���
	���
	�
	��

����� #���

� ��
�	
�����!
���!
� .�6'�/.�'++/��*'+
����
���
	�

��

������	�!
��
	���-
�
��
�����	�

• Generic form:

IN(state) and Prec � Actions

• 46 scenarios + structural information

'�(�
��� ����

���� ��	������
��

• Transcribed 46 scenarios into UML sequence diagrams
(2-20 messages each):

panel wthrCycle cm clientStatus client

POSTUPDATING

FAILED USE

no(CTAS_USE_NEW_WTHR)

set(DONE)

removePendingWthr

enableSet

writetoCMSIM(forecast)

{all}CM_CLOSE_CONNECTION

���������� ���	#���	�������
�

• Statecharts for CM synthesized using ScGen algorithm
(ICSE2000) extended to deal with state labels.

• Class diagram developed from requirements and populated
with method declarations

• Method bodies reverse engineered from existing CTAS
code

• C++ code generated using RoseRT

������	� ��)

• Design synthesis from scenarios
– Support design synthesis with patterns

– Develop algorithms for the “backwards direction”

– Application to reverse engineering

• Other models
– Algorithms for translating between multiple viewpoints for other

UML models: e.g., in developing consistent domain models for state
estimation program synthesis

Principal Investigator:
Jon Whittle, QSS Group Inc.
NASA Ames Research Center
+1 650 604 3589
jonathw@email.arc.nasa.gov

Project Researchers:
Jon Whittle and Johann Schumann,
NASA Ames Research Center

Objective:
Increase the effectiveness and efficiency of software modeling within
NASA by:
• developing advanced algorithms that support software modeling
• focusing on modeling languages in use within NASA – namely, the
Unified Modeling Language (UML)
• integrating the algorithms and their implementations into NASA
software projects
Benefits:
• Increased productivity and reliability in large NASA software
projects
• Reusability between NASA software projects

Synthesis of Software Designs from Requirements

Significant Accomplishments

• Prototype tool, ScGen, designed and implemented in Java
• Paper on ScGen won a Best Paper Award at the
International Conference on Software Engineering
• Research team have organized a number of successful,
high profile workshops in this field: at OOPSLA and ICSE
conferences
• ScGen currently undergoing application case study
within the CTAS software development process at NASA
Ames
• Silicon Valley start-up interested in commercialization

